skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jiasong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bridwell-Rabb, Jennifer (Ed.)
    Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme with three histidine ligands, plays a key role in cysteamine catabolism and regulation of the N-degron signaling pathway. Despite its importance, the catalytic mechanism of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol dioxygenase catalytic activities and a metal-substitution approach for mechanistic investigation using human ADO as a model. Two proposed mechanisms for ADO differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We hypothesized that substituting iron with a metal that has a disfavored tendency to form high-valent states would discriminate between mechanisms. This chapter details the expression, purification, preparation, and characterization of cobalt-substituted ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing retained reactivity in the cobalt-substituted enzyme. The results obtained favor the concurrent dioxygen transfer mechanism in ADO. This combined approach provides a powerful tool for studying other non-heme iron thiol oxidizing enzymes. 
    more » « less
  2. DeBeer, Serena (Ed.)
    We investigated the metal-substituted catalytic activity of human cysteamine dioxygenase (ADO), an enzyme pivotal in regulating thiol metabolism and contributing to oxygen homeostasis. Our findings demonstrate the catalytic competence of cobalt(II)- and nickel(II)-substituted ADO in cysteamine oxygenation. Notably, Co(II)-ADO exhibited superiority over Ni(II)-ADO despite remaining significantly less active than the natural enzyme. Structural analyses through X-ray crystallography and cobalt K-edge excitation confirmed successful metal substitution with minimal structural perturbations. This provided a robust structural basis, supporting a conserved catalytic mechanism tailored to distinct metal centers. This finding challenges the proposed high-valent ferryl-based mechanism for thiol dioxygenases, suggesting a non-high-valent catalytic pathway in the native enzyme. Further investigation of the cysteamine-bound or a peptide mimic of N-terminus RGS5 bound Co(II)-ADO binary complex revealed the metal center’s high-spin (S = 3/2) state. Upon reaction with O2, a kinetically and spectroscopically detectable intermediate emerged with a ground spin state of S = 1/2. This intermediate exhibits a characteristic 59Co hyperfine splitting (A = 67 MHz) structure in the EPR spectrum alongside UV–vis features, consistent with known low-spin Co(III)-superoxo complexes. This observation, unique for protein-bound thiolate-ligated cobalt centers in a protein, unveils the capacities for O2 activation in such metal environments. These findings provide valuable insights into the non-heme iron-dependent thiol dioxygenase mechanistic landscape, furthering our understanding of thiol metabolism regulation. The exploration of metal-substituted ADO sheds light on the intricate interplay between metal and catalytic activity in this essential enzyme. 
    more » « less
  3. Abstract Bifunctional catalase‐peroxidase (KatG) features a posttranslational methionine‐tyrosine‐tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen‐linked hydroperoxyl adduct (MYW‐OOH) inMycobacterium tuberculosisKatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW‐OOH‐containing KatG protein, we investigated the chemical stability and functional impact of MYW‐OOH. We discovered that MYW‐OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW‐OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, theN‐linked hydroperoxyl group is releasable. KatG with MYW‐OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role ofN‐linked hydroperoxyl modifications in enzymatic function. 
    more » « less
  4. null (Ed.)
  5. Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93–Tyr157 cross-linked cofactor. Here, we investigated this Cys–Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a genetic method. The catalytically active variants were obtained with a thioether bond between Cys93 and the halogen-substituted Tyr157, and we determined the crystal structures of both wild-type and engineered CDO variants in the purely uncross-linked form and with a mature cofactor. Along with mass spectrometry and 19F NMR, these data indicated that the enzyme could catalyze oxidative C–F or C–Cl bond cleavage, resulting in a substantial conformational change of both Cys93 and Tyr157 during cofactor assembly. These findings provide insights into the mechanism of Cys–Tyr cofactor biogenesis and may aid the development of bioinspired aromatic carbon–halogen bond activation. 
    more » « less
  6. Abstract Cysteamine dioxygenase (ADO) is a thiol dioxygenase whose study has been stagnated by the ambiguity as to whether or not it possesses an anticipated protein‐derived cofactor. Reported herein is the discovery and elucidation of a Cys‐Tyr cofactor in human ADO, crosslinked between Cys220 and Tyr222 through a thioether (C−S) bond. By genetically incorporating an unnatural amino acid, 3,5‐difluoro‐tyrosine (F2‐Tyr), specifically into Tyr222 of human ADO, an autocatalytic oxidative carbon–fluorine bond activation and fluoride release were identified by mass spectrometry and19F NMR spectroscopy. These results suggest that the cofactor biogenesis is executed by a powerful oxidant during an autocatalytic process. Unlike that of cysteine dioxygenase, the crosslinking results in a minimal structural change of the protein and it is not detectable by routine low‐resolution techniques. Finally, a new sequence motif, C‐X‐Y‐Y(F), is proposed for identifying the Cys‐Tyr crosslink. 
    more » « less
  7. Abstract Cysteamine dioxygenase (ADO) is a thiol dioxygenase whose study has been stagnated by the ambiguity as to whether or not it possesses an anticipated protein‐derived cofactor. Reported herein is the discovery and elucidation of a Cys‐Tyr cofactor in human ADO, crosslinked between Cys220 and Tyr222 through a thioether (C−S) bond. By genetically incorporating an unnatural amino acid, 3,5‐difluoro‐tyrosine (F2‐Tyr), specifically into Tyr222 of human ADO, an autocatalytic oxidative carbon–fluorine bond activation and fluoride release were identified by mass spectrometry and19F NMR spectroscopy. These results suggest that the cofactor biogenesis is executed by a powerful oxidant during an autocatalytic process. Unlike that of cysteine dioxygenase, the crosslinking results in a minimal structural change of the protein and it is not detectable by routine low‐resolution techniques. Finally, a new sequence motif, C‐X‐Y‐Y(F), is proposed for identifying the Cys‐Tyr crosslink. 
    more » « less